Total No. of Questions	•	8]
-------------------------------	---	----

SEAT No. :	
------------	--

PB-2217

[Total No. of Pages: 3

[6263]-54

B.E. (Civil Engineering)

TRANSPORTATION ENGINEERING

		(2019 Pattern) (Semester - VII) (401002)	
Time	: 2	[Max. Marks:	70
Instr	uct	tions to the candidates:	
	1)	Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.	
	<i>2</i>)	Figures to the right indicates full marks.	
	<i>3</i>)	Use of electronic pocket calculator is allowed.	
	<i>4</i>)	Assume suitable data if necessary.	
	5)	Neat diagrams must be drawn wherever necessary.	
Q 1)	a)	Explain any two important pavement surface characteristics with respet to highway geometric design.	ect [6]
	b)		per [6]
	c)		tal [6]
Q 2)	a)	State and explain the factors governing the stopping sight distance	[6]
	b)		ph. [6]
	c)		oad [6]
Q 3)	a)	What are the desirable properties of the sub grade soil?	[6]
	b)		sts. [6]
	c)		ow [6]
		\sim D \sim \sim	

<i>Q4</i>)	a)	What is Foamed Bitumen? How foamed bitumen is prepared and where	
		it is used. [6]	
	b)	Explain the Flash and Fire Point Test. [6]	
	c)	Discuss the desirable properties of bitumen. Compare tar and bitumen.	
		[6]	J
Q 5)	a)	Draw a neat cross section of flexible pavement. Explain in brief functions of various layers of flexible pavement.	_
	b)	of various layers of flexible pavement. [5] Explain different stresses in flexible pavements. [6]	
	b)		
	c)	Compute the radius of relative stiffness of 15cm thick cement concrete slab from the following data: [6]	
		Modulus of elasticity of cement concrete = 210000 kg/cm ²	•
		Poisson's ratio for concrete = 0.13	
		Modulus of subgrade reaction,	
		K i) 3.0 kg/cm ³ ii) 7.5 kg/cm ³	
		OR OR	
Q6)	a)	Explain with sketch equivalent single wheel load ESWL. [5]	1
20)	b)	Calculate the stresses at interior and corner regions of cement concrete	
	0)	pavement using Westergaard's stress equations. Use the following data: [6]	
		Modulus of elasticity of cement concrete = 300000 kg/cm ²	
		Wheel load = 5100 kg	
		Pavement thickness = 18 cm	
		Poisson's ratio for concrete = 0.15	
		Modulus of subgrade reaction = 6.0 kg/cm ³	
		Radius of contact area 15 cm	
	c)	Explain the importance of dowel and tie bars in rigid pavements. [6]]
Q7)	a)	Define Pier. Draw a neat sketch of the Hammer head shape pier and	1
		Multiple bent Pier. [6]	
	b)	A bridge is proposed to be constructed across an alluvium stream carrying	
		a discharge of 300 m ³ /s. Assume silt factor, $f = 1.10$, determine the	
		maximum scour depth when the bridge consists of 5 spans of 20 m each.	
	c)	Define Rail Guage and explain its types. [5]	
	- /	OR OR	•
[626	3]-54	2 🌣	

Q8) a)	Define Abutment.	State the various types	of abutments.	Also State	the
		ood Abutments.			[6]

A bridge has a linear waterway of 110m constructed across a stream, b) whose natural waterway is 190 m. If the flood flow is 950 Cumecs and the mean depth of flow is 2.75m, Calculate the Afflux under the bridge.

[5] c)

[6]

Explain the function of ballast. RO THE TOTAL OF THE STATE OF TH

[6263]-54